skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Solomon, E A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fluid generation and migration regulate the development of pore fluid pressure, which is hypothesized to influence the occurrence of slow slip events at subduction zones. Seafloor seep sites present the opportunity to directly sample fluids flowing through the accretionary wedge and assess the hydrogeologic conditions of the outer forearc. We present heat flow measurements and pore water geochemistry from sediment cores collected at fault‐hosted seep sites on the southern and northern Hikurangi margin, offshore the North Island of New Zealand. These measurements span the deformation front to the shelf break. Along the northern margin, heat flow data do not show anomalies that can be obviously attributed to the discharge of warm fluids. Pore fluid compositions indicate that seep fluids originate from compaction within the uppermost wedge. Reactive‐transport modeling of pore water solute profiles produces fluid flow rate estimates ≤2 cm/yr. Shallow fluid sources and low discharge rates at offshore fault‐hosted seeps suggest that the sampled fault zones are characterized by low permeability at depth, preventing efficient drainage of the megathrust and underthrust sediments to the seafloor. These results provide additional evidence that the northern Hikurangi margin plate boundary is associated with high pore fluid pressures that likely act as a control on slow slip activity. 
    more » « less
  2. Abstract Vast amounts of carbon are stored beneath the seafloor in the form of methane hydrate. Hydrate is stable at moderate pressure and low temperature at a depth extending several hundred meters beneath the seafloor to the base of gas hydrate stability (BGHS) often marked by bottom simulating reflections (BSRs) in seismic profiles. However, data from logging‐while‐drilling and coring during Integrated Ocean Discovery Program Expeditions 372 and 375 offshore New Zealand identified hydrate ∼60 m beneath the BSR. This hydrate appears to be dissociating over thousands of years following a gradual temperature increase from sediment burial modulated by changes in bottom‐water temperature and sea‐level fluctuations. Slow hydrate dissociation significantly buffers the release of methane and therefore, carbon through glacial cycles. Dissociating hydrate beneath the BGHS may also increase estimated global budgets of methane stored in hydrate. 
    more » « less